Sciact
  • EN
  • RU

TWO‑WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2022, Pages: 1-19 Pages count : 19 DOI: 10.1007/s10958-022-05903-y
Tags Weighted Sobolev space · Quasiconformal analysis · Composition operator · Capacity estimate
Authors Vodopyanov S.K. 1
Affiliations
1 Sobolev Institute of Mathematics, Acad. Koptyug av.4, 630090 Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: We establish some equivalent conditions for a homeomorphism φ:D→D^' of Euclidean domains in R^n, n≥2, to induce a bounded composition operator φ*:L_p^1 (D';ω)∩Lip_l⁡(D' )→L_q^1 (D;θ), where 1<q≤p<∞, by the composition rule: φ*(f)=f∘φ. Here ω:D'→(0,∞) is an arbitrary weight function on the domain D', and θ:D→(0,∞) is some weight function in Muckenhoupt's A_q-class on the domain D. Moreover, we prove that the class of homeomorphisms under consideration is completely determined by the controlled variation of the weighted capacity of cubical condensers whose shells are concentric cubes.
Cite: Vodopyanov S.K.
TWO‑WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS
Journal of Mathematical Sciences (United States). 2022. P.1-19. DOI: 10.1007/s10958-022-05903-y Scopus РИНЦ OpenAlex
Dates:
Accepted: Sep 23, 2022
Published online: Sep 28, 2022
Identifiers:
Scopus: 2-s2.0-85139132549
Elibrary: 59747669
OpenAlex: W4297548875
Citing: Пока нет цитирований
Altmetrics: