Sciact
  • EN
  • RU

Exponential tightness for integral – type functionals of centered independent differently distributed random variables Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 1, Pages: 273–284 Pages count : DOI: 10.33048/semi.2022.19.021
Tags random field, Cramer's moment condition, large deviations principle, moderate deviations principle, exponential tightness
Authors Logachov A.V. 1,2,3 , Mogulskii A.A. 1,3
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State Technical University
3 Novosibirsk State University

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: Exponential tightness is proved for a sequence of integral – type random fields constructed by centered independent differently distributed random variables. This result is proven using sufficient conditions for the exponential tightness of a sequence of continuous random fields of arbitrary form, which are also obtained in this paper.
Cite: Logachov A.V. , Mogulskii A.A.
Exponential tightness for integral – type functionals of centered independent differently distributed random variables
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.273–284. DOI: 10.33048/semi.2022.19.021 WOS Scopus РИНЦ MathNet
Dates:
Published online: May 11, 2021
Submitted: Oct 19, 2021
Published print: May 11, 2022
Identifiers:
Web of science: WOS:000793381900009
Scopus: 2-s2.0-85129754997
Elibrary: 49384633
MathNet: 1498
Citing:
DB Citing
Scopus 1
Web of science 1
Elibrary 1
Altmetrics: