Sciact
  • EN
  • RU

On the Hochschild Cohomologies of Associative Conformal Algebras with a Finite Faithful Representation Full article

Journal Communications in Mathematical Physics
ISSN: 0010-3616 , E-ISSN: 1432-0916
Output data Year: 2019, Volume: 369, Number: 1, Pages: 351-370 Pages count : 20 DOI: 10.1007/s00220-019-03309-7
Authors Kolesnikov P.S. 1 , Kozlov R.A. 2
Affiliations
1 Sobolev Institute of Mathematics, Akad. Koptyug ave., 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Pirogova str., 1, Novosibirsk, 630090, Russian Federation

Abstract: Associative conformal algebras of conformal endomorphisms are of essential importance for the study of finite representations of conformal Lie algebras (Lie vertex algebras). We describe all semisimple algebras of conformal endomorphisms which have the trivial second Hochschild cohomology group with coefficients in every conformal bimodule. As a consequence, we state a complete solution of the radical splitting problem in the class of associative conformal algebras with a finite faithful representation.
Cite: Kolesnikov P.S. , Kozlov R.A.
On the Hochschild Cohomologies of Associative Conformal Algebras with a Finite Faithful Representation
Communications in Mathematical Physics. 2019. V.369. N1. P.351-370. DOI: 10.1007/s00220-019-03309-7 WOS Scopus OpenAlex
Dates:
Published online: Jan 28, 2019
Identifiers:
Web of science: WOS:000470309100010
Scopus: 2-s2.0-85060798672
OpenAlex: W2898911178
Citing:
DB Citing
Scopus 13
OpenAlex 2
Web of science 13
Altmetrics: