Sciact
  • EN
  • RU

On Jacobian group and complexity of the Y-graph Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 2, Pages: 662-673 Pages count : 12 DOI: 10.33048/semi.2022.19.055
Tags Chebyshev polynomial; Jacobian group; Laplacian matrix; Mahler measure; Spanning tree
Authors Kwon Y.S. 1 , Mednykh A.D. 2,3 , Mednykh I.A. 2,3
Affiliations
1 Department of Mathematics, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Kore
2 Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia
3 Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russa

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: In the present paper we suggest a simple approach for counting Jacobian group of the Y-graph Y(n;k,l,m). In the case Y(n;1, 1,1) the structure of the Jacobian group will be find explicitly. Also, we obtain a closed formula for the number of spanning trees of Y-graph in terms of Chebyshev polynomials and give its asymtotics.
Cite: Kwon Y.S. , Mednykh A.D. , Mednykh I.A.
On Jacobian group and complexity of the Y-graph
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.662-673. DOI: 10.33048/semi.2022.19.055 WOS Scopus РИНЦ
Identifiers:
Web of science: WOS:000886649600021
Scopus: 2-s2.0-85141143608
Elibrary: 50336841
Citing:
DB Citing
Scopus 1
Altmetrics: