Sciact
  • EN
  • RU

Gelfand–Dorfman algebras, derived identities, and the Manin product of operads Full article

Journal Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Output data Year: 2019, Volume: 539, Pages: 260-284 Pages count : 25 DOI: 10.1016/j.jalgebra.2019.07.034
Tags Differential algebra; Gelfand–Dorfman algebra; Identity; Operad; Poisson algebra
Authors Kolesnikov P.S. 1 , Sartayev B. 2 , Orazgaliev A. 3
Affiliations
1 Sobolev Institute of Mathematics
2 Suleyman Demirel University
3 Al-Farabi Kazakh National University

Abstract: Gelfand–Dorfman bialgebras (GD-algebras) are nonassocia- tive systems with two bilinear operations satisfying a series of identities that express Hamiltonian property of an opera- tor in the formal calculus of variations. The paper is devoted to the study of GD-algebras related with differential Pois- son algebras. As a byproduct, we obtain a general description of identities that hold for operations a > b = d(a)b and a < b = ad(b) on a (non-associative) differential algebra with a derivation d.
Cite: Kolesnikov P.S. , Sartayev B. , Orazgaliev A.
Gelfand–Dorfman algebras, derived identities, and the Manin product of operads
Journal of Algebra. 2019. V.539. P.260-284. DOI: 10.1016/j.jalgebra.2019.07.034 WOS Scopus OpenAlex
Dates:
Published online: Aug 13, 2019
Identifiers:
Web of science: WOS:000489677400011
Scopus: 2-s2.0-85070878878
OpenAlex: W2921364368
Citing:
DB Citing
Scopus 17
OpenAlex 18
Web of science 13
Altmetrics: