The number of rooted forests in circulant graphs Full article
Journal |
Ars Mathematica Contemporanea
ISSN: 1855-3966 , E-ISSN: 1855-3974 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 22, Number: 4, Article number : #P4.10, Pages count : DOI: 10.26493/1855-3974.2029.01d | ||||
Tags | Chebyshev polynomial; circulant graph; Laplacian matrix; Mahler measure; Rooted tree; spanning forest | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
In this paper, we develop a new method to produce explicit formulas for the number fG(n) of rooted spanning forests in the circulant graphs G = Cn(s1, s2, ..., sk) and G = C2n(s1, s2, ..., sk, n). These formulas are expressed through Chebyshev polynomials. We prove that in both cases the number of rooted spanning forests can be represented in the form fG(n) = p a(n)2, where a(n) is an integer sequence and p is a certain natural number depending on the parity of n. Finally, we find an asymptotic formula for fG(n) through the Mahler measure of the associated Laurent polynomial P(z) = 2k+1−Σki=1(zsi +z−si). © 2022 Society of Mathematicians, Physicists and Astronomers of Slovenia. All rights reserved.
Cite:
Grunwald L.A.
, Mednykh I.
The number of rooted forests in circulant graphs
Ars Mathematica Contemporanea. 2022. V.22. N4. #P4.10 . DOI: 10.26493/1855-3974.2029.01d WOS Scopus РИНЦ OpenAlex
The number of rooted forests in circulant graphs
Ars Mathematica Contemporanea. 2022. V.22. N4. #P4.10 . DOI: 10.26493/1855-3974.2029.01d WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000898437800010 |
Scopus: | 2-s2.0-85138637459 |
Elibrary: | 56379392 |
OpenAlex: | W2954392891 |