Sciact
  • EN
  • RU

Universal enveloping Poisson conformal algebras Full article

Journal International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500
Output data Year: 2020, Volume: 30, Number: 05, Pages: 1015-1034 Pages count : 20 DOI: 10.1142/s0218196720500289
Tags Conformal algebra; Gröbner-Shirshov basis; Poisson algebra
Authors Kolesnikov P.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: Lie conformal algebras are useful tools for studying vertex operator algebras and their representations. In this paper, we establish close relations between Poisson conformal algebras and representations of Lie conformal algebras. We also calculate explicitly Pois- son conformal brackets on the associated graded conformal algebras of universal asso- ciative conformal envelopes of the Virasoro conformal algebra and the Neveu–Schwartz conformal superalgebra.
Cite: Kolesnikov P.S.
Universal enveloping Poisson conformal algebras
International Journal of Algebra and Computation. 2020. V.30. N05. P.1015-1034. DOI: 10.1142/s0218196720500289 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000569132400004
Scopus: 2-s2.0-85082425779
OpenAlex: W3005177311
Citing:
DB Citing
Scopus 11
OpenAlex 7
Web of science 9
Altmetrics: