Sciact
  • EN
  • RU

Limit Theorems for the Maximal Path Weight in a Directed Graph on the Line with Random Weights of Edges Full article

Journal Problems of Information Transmission
ISSN: 0032-9460 , E-ISSN: 1608-3253
Output data Year: 2021, Volume: 2, Pages: 161–177 Pages count : DOI: 10.1134/S0032946021020058
Tags (integro-)local limit theorem; directed graph; maximal path weight; normal and moderate large deviations; skeleton and renewal points
Authors Konstantopoulos T. 1 , Logachov Artem Vasilʹevich 2,3,4 , Mogulʹskii Anatolii Alʹfredovich 2,3 , Foss Sergei Georgievich 2,3,5
Affiliations
1 The University of Liverpool
2 Sobolev Institute of Mathematics
3 Novosibirsk State University
4 Siberian State University of Geosystems and Technologies, Novosibirsk, Russia
5 Heriot–Watt University
Cite: Konstantopoulos T. , Logachov A.V. , Mogulʹskii A.A. , Foss S.G.
Limit Theorems for the Maximal Path Weight in a Directed Graph on the Line with Random Weights of Edges
Problems of Information Transmission. 2021. V.2. P.161–177. DOI: 10.1134/S0032946021020058 WOS Scopus OpenAlex
Original: Константопулос Т. , Логачев А.В. , Могульский А.А. , Фосс С.Г.
Предельные теоремы для максимального веса пути в направленном графе на целочисленной прямой со случайными весами ребер
Проблемы передачи информации. 2021. Т.57. №2. С.71-89. DOI: 10.31857/S0555292321020054 РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000671394500005
Scopus: 2-s2.0-85109633722
OpenAlex: W3179604528
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 1
Altmetrics: