On q-ary shortened-1-perfect-like codes Full article
Journal |
IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2022, Volume: 68, DOI: 10.1109/TIT.2022.3187004 | ||||||
Tags | Binary codes; Codes; Hamming distance; Hamming graph; Mathematics; multifold packings; multiple coverings; perfect codes; Signal processing; Symbols; Upper bound | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0017 |
Abstract:
We study codes with parameters of q-ary shortened Hamming codes, i.e., (n=(q^m-q)/(q-1), q^{n-m}, 3)_q. Firstly, we prove the fact mentioned in 1998 by Brouwer et al. that such codes are optimal, generalizing it to a bound for multifold packings of radius-1 balls, with a corollary for multiple coverings. In particular, we show that the punctured Hamming code is an optimal q-fold packing with minimum distance 2. Secondly, for every admissible length starting from n = 20, we show the existence of 4-ary codes with parameters of shortened 1-perfect codes that cannot be obtained by shortening a 1-perfect code.
Cite:
Shi M.
, Wu R.
, Krotov D.S.
On q-ary shortened-1-perfect-like codes
IEEE Transactions on Information Theory. 2022. V.68. DOI: 10.1109/TIT.2022.3187004 WOS Scopus РИНЦ OpenAlex
On q-ary shortened-1-perfect-like codes
IEEE Transactions on Information Theory. 2022. V.68. DOI: 10.1109/TIT.2022.3187004 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jul 4, 2021 |
Accepted: | Jun 22, 2022 |
Published online: | Jul 12, 2022 |
Identifiers:
Web of science: | WOS:000871032100012 |
Scopus: | 2-s2.0-85134262861 |
Elibrary: | 57965139 |
OpenAlex: | W3205622575 |