A generalization of Fibonacci groups Full article
| Journal |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||
|---|---|---|---|
| Output data | Year: 2003, Volume: 42, Number: 2, Pages: 73-91 Pages count : 19 DOI: 10.1023/A:1023346206070 | ||
| Tags | Fibonacci groups; Fundamental group; Hyperbolic 3-manifold; Sieradski groups | ||
| Authors |
|
||
| Affiliations |
|
Abstract:
We study the class of cyclically presented groups which contain Fibonacci groups and Sieradski groups. Conditions are specified for these groups to be finite, pairwise isomorphic, or aspherical. As a partial answer to the question of Cavicchioli, Hegenbarth, and Repovš, it is stated that there exists a wide subclass of groups with an odd number of generators which cannot appear as fundamental groups of hyperbolic three-dimensional manifolds of finite volume.
Cite:
Bardakov V.G.
, Vesnin A.Y.
A generalization of Fibonacci groups
Algebra and Logic. 2003. V.42. N2. P.73-91. DOI: 10.1023/A:1023346206070 Scopus OpenAlex
A generalization of Fibonacci groups
Algebra and Logic. 2003. V.42. N2. P.73-91. DOI: 10.1023/A:1023346206070 Scopus OpenAlex
Identifiers:
| Scopus: | 2-s2.0-14644436785 |
| OpenAlex: | W2156582263 |