Sciact
  • EN
  • RU

On the Baer--Suzuki Width of Some Radical Classes Full article

Journal Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605
Output data Year: 2022, Volume: 217, Number: Suppl. 1, Pages: S90-S97 Pages count : 8 DOI: 10.1134/S0081543822030075
Tags Baer–Suzuki width, σ-nilpotent group, σ-solvable group, complete class of groups.
Authors Guo J. 1 , Guo W. 1,2 , Revin D.O. 3,4 , Tyutyanov V.N. 5
Affiliations
1 Hainan University, Haikou, 570228 China
2 University of Science and Technology of China, Hefei, 230026 China
3 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
4 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia
5 Gomel Branch of the International University “MITSO,” Gomel, 246029 Belarus

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0002
2 Russian Foundation for Basic Research 20-51-00007

Abstract: Let σ = {σi | i ∈ I} be a fixed partition of the set of all primes into pairwise disjoint nonempty subsets σi. A finite group is called σ-nilpotent if it has a normal σi-Hall subgroup for any i ∈ I. Any finite group possesses a σ-nilpotent radical, which is the largest normal σ-nilpotent subgroup. In this note, it is proved that there exists an integer m = m(σ) such that the σ-nilpotent radical of any finite group coincides with the set of elements x such that any m conjugates of x generate a σ-nilpotent subgroup. Other possible analogs of the classical Baer–Suzuki theorem are discussed.
Cite: Guo J. , Guo W. , Revin D.O. , Tyutyanov V.N.
On the Baer--Suzuki Width of Some Radical Classes
Proceedings of the Steklov Institute of Mathematics. 2022. V.217. NSuppl. 1. P.S90-S97. DOI: 10.1134/S0081543822030075 WOS Scopus РИНЦ OpenAlex
Original: Го Ц. , Го В. , Ревин Д.О. , Тютянов В.Н.
О ширине Бэра - Сузуки некоторых радикальных классов
Труды Института математики и механики УрО РАН (Trudy Instituta Matematiki i Mekhaniki UrO RAN). 2022. Т.28. №2. С.96-105. DOI: 10.21538/0134-4889-2022-28-2-96-105 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Apr 10, 2022
Accepted: Apr 25, 2022
Published print: Nov 14, 2022
Published online: Nov 14, 2022
Identifiers:
Web of science: WOS:000883773100007
Scopus: 2-s2.0-85145422374
Elibrary: 51824085
OpenAlex: W4312334726
Citing: Пока нет цитирований
Altmetrics: