Sciact
  • EN
  • RU

The volume of a spherical antiprism with $S_{2n}$ symmetry Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2021, Volume: 18, Number: 2, Pages: 1165-1179 Pages count : 15 DOI: 10.33048/semi.2021.18.088
Tags Rotation followed by reflection; Spherical antiprism; Spherical isosceles trapezoid; Spherical volume; Symmetry group s2n
Authors Abrosimov N.V. 1,2,3 , Vuong B. 2,3
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University
3 Tomsk State University

Abstract: We consider a spherical antiprism. It is a convex polyhedron with 2n vertices in the spherical space S^3. This polyhedron has a group of symmetries S_{2n} generated by a mirror-rotational symmetry of order 2n, i.e. rotation to the angle π/n followed by a reflection. We establish necessary and su􏰅cient conditions for the existence of such polyhedron in S^3. Then we find relations between its dihedral angles and edge lengths in the form of cosine rules through a property of a spherical isosceles trapezoid. Finally, we obtain an explicit integral formula for the volume of a spherical antiprism in terms of the edge lengths.
Cite: Abrosimov N.V. , Vuong B.
The volume of a spherical antiprism with $S_{2n}$ symmetry
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2021. V.18. N2. P.1165-1179. DOI: 10.33048/semi.2021.18.088 WOS Scopus OpenAlex
Dates:
Published online: Nov 9, 2021
Identifiers:
Web of science: WOS:000734395000008
Scopus: 2-s2.0-85124160291
OpenAlex: W4205351345
Citing: Пока нет цитирований
Altmetrics: