Sciact
  • EN
  • RU

The existence of perfect codes in Doob graphs Full article

Journal IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654
Output data Year: 2020, Volume: 66, Number: 3, Pages: 1423-1427 Pages count : 5 DOI: 10.1109/tit.2019.2946612
Tags Perfect codes, Doob graphs, Eisenstein-Jacobi integers
Authors Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: We solve the problem of existence of perfect codes in the Doob graph. It is shown that 1-perfect codes in the Doob graph D(m, n) exist if and only if 6m+3n+1 is a power of 2; that is, if the size of a 1-ball divides the number of vertices.
Cite: Krotov D.S.
The existence of perfect codes in Doob graphs
IEEE Transactions on Information Theory. 2020. V.66. N3. P.1423-1427. DOI: 10.1109/tit.2019.2946612 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Oct 8, 2018
Accepted: Aug 30, 2019
Published online: Oct 11, 2019
Identifiers:
Web of science: WOS:000519925900008
Scopus: 2-s2.0-85081054547
Elibrary: 43246952
OpenAlex: W3100822229
Citing:
DB Citing
Web of science 4
Scopus 6
Elibrary 5
OpenAlex 6
Altmetrics: