CI-Property for decomposable schur rings over an abelian group Full article
Journal |
Algebra Colloquium
ISSN: 1005-3867 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2019, Volume: 26, Number: 1, Pages: 147-160 Pages count : 14 DOI: 10.1142/S1005386719000142 | ||||||
Tags | isomorphism, CI-group, Schur ring | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
A Schur ring over a finite group is said to be decomposable if it is the generalized wreath product of Schur rings over smaller groups. In this paper we establish a sufficient condition for a decomposable Schur ring over the direct product of elementary abelian groups to be a CI-Schur ring. By using this condition we offer short proofs for some known results on the CI-property for decomposable Schur rings over an elementary abelian group of rank at most 5.
Cite:
Kovacs I.
, Ryabov G.
CI-Property for decomposable schur rings over an abelian group
Algebra Colloquium. 2019. V.26. N1. P.147-160. DOI: 10.1142/S1005386719000142 WOS Scopus OpenAlex
CI-Property for decomposable schur rings over an abelian group
Algebra Colloquium. 2019. V.26. N1. P.147-160. DOI: 10.1142/S1005386719000142 WOS Scopus OpenAlex
Dates:
Submitted: | Feb 13, 2018 |
Accepted: | Oct 29, 2018 |
Identifiers:
Web of science: | WOS:000460543000013 |
Scopus: | 2-s2.0-85062651751 |
OpenAlex: | W2896866284 |