Sciact
  • EN
  • RU

CI-Property for decomposable schur rings over an abelian group Full article

Journal Algebra Colloquium
ISSN: 1005-3867
Output data Year: 2019, Volume: 26, Number: 1, Pages: 147-160 Pages count : 14 DOI: 10.1142/S1005386719000142
Tags isomorphism, CI-group, Schur ring
Authors Kovacs Istvan 1 , Ryabov Grigory 2,3
Affiliations
1 University of Primorska
2 Sobolev Institute of Mathematics
3 Novosibirsk State University

Abstract: A Schur ring over a finite group is said to be decomposable if it is the generalized wreath product of Schur rings over smaller groups. In this paper we establish a sufficient condition for a decomposable Schur ring over the direct product of elementary abelian groups to be a CI-Schur ring. By using this condition we offer short proofs for some known results on the CI-property for decomposable Schur rings over an elementary abelian group of rank at most 5.
Cite: Kovacs I. , Ryabov G.
CI-Property for decomposable schur rings over an abelian group
Algebra Colloquium. 2019. V.26. N1. P.147-160. DOI: 10.1142/S1005386719000142 WOS Scopus OpenAlex
Dates:
Submitted: Feb 13, 2018
Accepted: Oct 29, 2018
Identifiers:
Web of science: WOS:000460543000013
Scopus: 2-s2.0-85062651751
OpenAlex: W2896866284
Citing:
DB Citing
Scopus 6
OpenAlex 6
Web of science 5
Altmetrics: