Sciact
  • EN
  • RU

The Cayley isomorphism property for the group C_4 x C^2_p Full article

Journal Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125
Output data Year: 2021, Volume: 49, Number: 4, Pages: 1788-1804 Pages count : 17 DOI: 10.1080/00927872.2020.1853141
Tags -groups; Isomorphisms; Schur rings
Authors Ryabov Grigory 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: A finite group G is called a DCI-group if every two isomorphic Cayley digraphs over G are Cayley isomorphic, i.e. their connection sets are conjugate by a group automorphism. We prove that the group C4 x C2p, where p is a prime, is a DCI-group if and only if p \neq 2:
Cite: Ryabov G.
The Cayley isomorphism property for the group C_4 x C^2_p
Communications in Algebra. 2021. V.49. N4. P.1788-1804. DOI: 10.1080/00927872.2020.1853141 WOS Scopus OpenAlex
Dates:
Submitted: Mar 20, 2020
Accepted: Oct 7, 2020
Identifiers:
Web of science: WOS:000597704800001
Scopus: 2-s2.0-85102230742
OpenAlex: W3112497177
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 1
Altmetrics: