The Cayley isomorphism property for the group C_4 x C^2_p Full article
Journal |
Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125 |
||||
---|---|---|---|---|---|
Output data | Year: 2021, Volume: 49, Number: 4, Pages: 1788-1804 Pages count : 17 DOI: 10.1080/00927872.2020.1853141 | ||||
Tags | -groups; Isomorphisms; Schur rings | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
A finite group G is called a DCI-group if every two isomorphic Cayley digraphs over G are Cayley isomorphic, i.e. their connection sets are conjugate by a group automorphism. We prove that the group C4 x C2p, where p is a prime, is a DCI-group if and only if p \neq 2:
Cite:
Ryabov G.
The Cayley isomorphism property for the group C_4 x C^2_p
Communications in Algebra. 2021. V.49. N4. P.1788-1804. DOI: 10.1080/00927872.2020.1853141 WOS Scopus OpenAlex
The Cayley isomorphism property for the group C_4 x C^2_p
Communications in Algebra. 2021. V.49. N4. P.1788-1804. DOI: 10.1080/00927872.2020.1853141 WOS Scopus OpenAlex
Dates:
Submitted: | Mar 20, 2020 |
Accepted: | Oct 7, 2020 |
Identifiers:
Web of science: | WOS:000597704800001 |
Scopus: | 2-s2.0-85102230742 |
OpenAlex: | W3112497177 |