Sciact
  • EN
  • RU

The Weisfeiler–Leman Dimension of Chordal Bipartite Graphs Without Bipartite Claw Full article

Journal Graphs and Combinatorics
ISSN: 0911-0119 , E-ISSN: 1435-5914
Output data Year: 2021, Volume: 37, Number: 3, Pages: 1089-1102 Pages count : 14 DOI: 10.1007/s00373-021-02308-7
Tags Graph isomorphism problem, Weisfeiler–Leman dimension, Coherent configuration
Authors Ponomarenko Ilia 1 , Ryabov Grigory 2,3
Affiliations
1 St. Petersburg Department of the Steklov Mathematical Institute
2 Sobolev Institute of Mathematics
3 Novosibirsk State University

Abstract: A graph X is said to be chordal bipartite if it is bipartite and contains no induced cycle of length at least 6. It is proved that if X does not contain bipartite claw as an induced subgraph, then the Weisfeiler–Leman dimension of X is at most 3. This implies that the Weisfeiler–Leman dimension of any bipartite permutation graph is at most 3. The proof is based on the theory of coherent configurations.
Cite: Ponomarenko I. , Ryabov G.
The Weisfeiler–Leman Dimension of Chordal Bipartite Graphs Without Bipartite Claw
Graphs and Combinatorics. 2021. V.37. N3. P.1089-1102. DOI: 10.1007/s00373-021-02308-7 WOS Scopus OpenAlex
Dates:
Submitted: Jul 7, 2020
Accepted: Mar 9, 2021
Published print: Mar 19, 2021
Identifiers:
Web of science: WOS:000632735800001
Scopus: 2-s2.0-85103189262
OpenAlex: W3150973893
Citing:
DB Citing
Scopus 2
OpenAlex 3
Web of science 2
Altmetrics: