Sciact
  • EN
  • RU

An Approximation Algorithm for Graph Clustering with Clusters of Bounded Sizes Full article

Journal Communications in Computer and Information Science
ISSN: 1865-0929
Output data Year: 2022, Volume: 1661 CCIS, Pages: 68-75 Pages count : 8 DOI: 10.1007/978-3-031-16224-4_4
Tags Approximation algorithm; Graph clustering; Performance guarantee
Authors Il’ev V. 1,2 , Il’eva S. 1 , Gorbunov N. 2
Affiliations
1 Dostoevsky Omsk State University, Omsk, Russian Federation
2 Sobolev Institute of Mathematics SB RAS, Omsk, Russian Federation

Funding (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0020

Abstract: In graph clustering problems, one has to partition the set of vertices of a graph into disjoint subsets (called clusters) minimizing the number of edges between clusters and the number of missing edges within clusters. We consider a version of the problem in which cluster sizes are bounded from above by a positive integer s. This problem is NP-hard for any fixed s⩾ 3. We propose a polynomial-time approximation algorithm for this version of the problem. Its performance guarantee is better than earlier known bounds for all s⩾ 5. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Cite: Il’ev V. , Il’eva S. , Gorbunov N.
An Approximation Algorithm for Graph Clustering with Clusters of Bounded Sizes
Communications in Computer and Information Science. 2022. V.1661 CCIS. P.68-75. DOI: 10.1007/978-3-031-16224-4_4 Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85140451534
OpenAlex: W4312956446
Citing: Пока нет цитирований
Altmetrics: