Sciact
  • EN
  • RU

On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2 Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2022, Volume: 16, Number: 2, Pages: 385--376 Pages count : DOI: 10.1134/S1990478922020168
Tags Wiener algebra, factorization problem, partial indices, truncated Wiener–Hopf equation
Authors Voronin A.F. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0009

Abstract: A method for reducing the factorization problem for an arbitrary matrix function with nonnegative total index in (an everywhere dense subalgebra of) the Wiener algebra of order 2 to the truncated Wiener–Hopf equation is found. With the help of the method, an efficient factorization of one class of matrix functions in the Wiener algebra of order 2 is constructed.
Cite: Voronin A.F.
On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.385--376. DOI: 10.1134/S1990478922020168 Scopus РИНЦ OpenAlex
Original: Воронин А.Ф.
К методу факторизации матриц-функций в алгебре Винера порядка 2
Сибирский журнал индустриальной математики. 2022. Т.25. №2. С.32–45. DOI: 10.33048/SIBJIM.2022.25.203 РИНЦ
Dates:
Submitted: Aug 29, 2021
Accepted: Aug 29, 2021
Published print: Nov 2, 2022
Identifiers:
Scopus: 2-s2.0-85141920734
Elibrary: 51778710
OpenAlex: W4312867253
Citing:
DB Citing
Scopus 2
OpenAlex 2
Elibrary 2
Altmetrics: