On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2 Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||
---|---|---|---|
Output data | Year: 2022, Volume: 16, Number: 2, Pages: 385--376 Pages count : DOI: 10.1134/S1990478922020168 | ||
Tags | Wiener algebra, factorization problem, partial indices, truncated Wiener–Hopf equation | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0009 |
Abstract:
A method for reducing the factorization problem for an arbitrary matrix function with nonnegative total index in (an everywhere dense subalgebra of) the Wiener algebra of order 2 to the truncated Wiener–Hopf equation is found. With the help of the method, an efficient factorization of one class of matrix functions in the Wiener algebra of order 2 is constructed.
Cite:
Voronin A.F.
On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.385--376. DOI: 10.1134/S1990478922020168 Scopus РИНЦ OpenAlex
On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.385--376. DOI: 10.1134/S1990478922020168 Scopus РИНЦ OpenAlex
Original:
Воронин А.Ф.
К методу факторизации матриц-функций в алгебре Винера порядка 2
Сибирский журнал индустриальной математики. 2022. Т.25. №2. С.32–45. DOI: 10.33048/SIBJIM.2022.25.203 РИНЦ
К методу факторизации матриц-функций в алгебре Винера порядка 2
Сибирский журнал индустриальной математики. 2022. Т.25. №2. С.32–45. DOI: 10.33048/SIBJIM.2022.25.203 РИНЦ
Dates:
Submitted: | Aug 29, 2021 |
Accepted: | Aug 29, 2021 |
Published print: | Nov 2, 2022 |
Identifiers:
Scopus: | 2-s2.0-85141920734 |
Elibrary: | 51778710 |
OpenAlex: | W4312867253 |