On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2 Full article
| Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||
|---|---|---|---|
| Output data | Year: 2022, Volume: 16, Number: 2, Pages: 385--376 Pages count : DOI: 10.1134/S1990478922020168 | ||
| Tags | Wiener algebra, factorization problem, partial indices, truncated Wiener–Hopf equation | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | FWNF-2022-0009 |
Abstract:
A method for reducing the factorization problem for an arbitrary matrix function with nonnegative total index in (an everywhere dense subalgebra of) the Wiener algebra of order 2 to the truncated Wiener–Hopf equation is found. With the help of the method, an efficient factorization of one class of matrix functions in the Wiener algebra of order 2 is constructed.
Cite:
Voronin A.F.
On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.385--376. DOI: 10.1134/S1990478922020168 Scopus РИНЦ OpenAlex
On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.385--376. DOI: 10.1134/S1990478922020168 Scopus РИНЦ OpenAlex
Original:
Воронин А.Ф.
К методу факторизации матриц-функций в алгебре Винера порядка 2
Сибирский журнал индустриальной математики. 2022. Т.25. №2. С.32–45. DOI: 10.33048/SIBJIM.2022.25.203 РИНЦ
К методу факторизации матриц-функций в алгебре Винера порядка 2
Сибирский журнал индустриальной математики. 2022. Т.25. №2. С.32–45. DOI: 10.33048/SIBJIM.2022.25.203 РИНЦ
Dates:
| Submitted: | Aug 29, 2021 |
| Accepted: | Aug 29, 2021 |
| Published print: | Nov 2, 2022 |
Identifiers:
| Scopus: | 2-s2.0-85141920734 |
| Elibrary: | 51778710 |
| OpenAlex: | W4312867253 |