Sciact
  • EN
  • RU

The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2021, Volume: 62, Number: 2, Pages: 239-261 Pages count : 23 DOI: 10.1134/S0037446621020051
Tags 517.518.182:517.518.114:514.7; Carnot group; coarea formula; level set; sub-Lorentzian measure; sub-Lorentzian structure; vector function
Authors Karmanova M.B. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: We establish the coarea formula as an expression forthe measure of a subset of a Carnot groupin terms of the sub-Lorentzian measure ofthe intersections of the subset with the level sets of a vector function.We describe the conditions for the level sets of vector functions to be spacelikeand find the metric characteristics of these surfaces.Also, we address a series of relevant questions,in particular, about the uniqueness of the coarea factor.
Cite: Karmanova M.B.
The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure
Siberian Mathematical Journal. 2021. V.62. N2. P.239-261. DOI: 10.1134/S0037446621020051 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000635714500005
Scopus: 2-s2.0-85103990572
OpenAlex: W3152140922
Citing:
DB Citing
Scopus 6
OpenAlex 6
Web of science 3
Altmetrics: