The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2021, Volume: 62, Number: 2, Pages: 239-261 Pages count : 23 DOI: 10.1134/S0037446621020051 | ||
Tags | 517.518.182:517.518.114:514.7; Carnot group; coarea formula; level set; sub-Lorentzian measure; sub-Lorentzian structure; vector function | ||
Authors |
|
||
Affiliations |
|
Abstract:
We establish the coarea formula as an expression forthe measure of a subset of a Carnot groupin terms of the sub-Lorentzian measure ofthe intersections of the subset with the level sets of a vector function.We describe the conditions for the level sets of vector functions to be spacelikeand find the metric characteristics of these surfaces.Also, we address a series of relevant questions,in particular, about the uniqueness of the coarea factor.
Cite:
Karmanova M.B.
The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure
Siberian Mathematical Journal. 2021. V.62. N2. P.239-261. DOI: 10.1134/S0037446621020051 WOS Scopus OpenAlex
The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure
Siberian Mathematical Journal. 2021. V.62. N2. P.239-261. DOI: 10.1134/S0037446621020051 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000635714500005 |
Scopus: | 2-s2.0-85103990572 |
OpenAlex: | W3152140922 |