Rigidity Theorem for Self-Affine Arcs Full article
Journal |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2021, Volume: 103, Number: 2, Pages: 81-84 Pages count : 4 DOI: 10.1134/S1064562421020058 | ||||||
Tags | attractor; rigidity theorem; self-affine arc; weak separation property | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
Abstract: It has been known for more than a decade that, if a self-similar arc γ can be shifted along itself by similarity maps that are arbitrarily close to identity, then γ is a straight line segment. We extend this statement to the class of self-affine arcs and prove that each self-affine arc admitting affine shifts that may be arbitrarily close to identity is a segment of a parabola or a straight line.
Cite:
Tetenov A.V.
, Chelkanova O.A.
Rigidity Theorem for Self-Affine Arcs
Doklady Mathematics. 2021. V.103. N2. P.81-84. DOI: 10.1134/S1064562421020058 WOS Scopus OpenAlex
Rigidity Theorem for Self-Affine Arcs
Doklady Mathematics. 2021. V.103. N2. P.81-84. DOI: 10.1134/S1064562421020058 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000673209700004 |
Scopus: | 2-s2.0-85111125614 |
OpenAlex: | W3197486249 |