Sciact
  • EN
  • RU

The minimal polynomials of powers of cycles in the ordinary representations of symmetric and alternating groups Full article

Journal Journal of Algebra and its Applications
ISSN: 0219-4988
Output data Year: 2021, Volume: 20, Number: 11, Article number : 2150209, Pages count : DOI: 10.1142/S0219498821502091
Tags Alternating group; Irreducible representation; Minimal polynomial; Symmetric group
Authors Yang N. 1 , Staroletov A.M. 2,3
Affiliations
1 School of Science, Jiangnan University, Wuxi, 214122, China
2 Sobolev Institute of Mathematics, Koptyuga 4, Novosibirsk, 630090, Russian Federation
3 Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russian Federation

Abstract: Denote the alternating and symmetric groups of degree n by An and Sn, respectively. Consider a permutation σ Sn, all of whose nontrivial cycles are of the same length. We find the minimal polynomials of σ in the ordinary irreducible representations of An and Sn. © 2021 World Scientific Publishing Company.
Cite: Yang N. , Staroletov A.M.
The minimal polynomials of powers of cycles in the ordinary representations of symmetric and alternating groups
Journal of Algebra and its Applications. 2021. V.20. N11. 2150209 . DOI: 10.1142/S0219498821502091 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000708911100006
Scopus: 2-s2.0-85095432204
OpenAlex: W3041529542
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 1
Altmetrics: