Sciact
  • EN
  • RU

On Categoricity Spectra for Locally Finite Graphs Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2021, Volume: 62, Number: 5, Pages: 796-804 Pages count : 9 DOI: 10.1134/S0037446621050037
Tags 510.5; autostability; categoricity spectrum; computable categoricity; computable model; degree of categoricity; locally finite graph
Authors Bazhenov N.A. 1 , Marchuk M.I. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Funding (1)

1 Russian Foundation for Basic Research 20-31-70006

Abstract: Under study is the algorithmic complexity of isomorphisms between computable copiesof locally finite graphs $ G $ (undirected graphs whose every vertex has finite degree).We obtain the following results: If $ G $ has only finitely many components then $ G $is $ {\mathbf{d}} $-computably categorical for every Turing degree $ {\mathbf{d}} $from the class $ PA({\mathbf{0}}^{\prime}) $. If $ G $ has infinitely many components then $ G $is $ {\mathbf{0}}^{\prime\prime} $-computably categorical. We exhibit a series of examplesshowing that the obtained bounds are sharp. © 2021, Pleiades Publishing, Ltd.
Cite: Bazhenov N.A. , Marchuk M.I.
On Categoricity Spectra for Locally Finite Graphs
Siberian Mathematical Journal. 2021. V.62. N5. P.796-804. DOI: 10.1134/S0037446621050037 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000698762500003
Scopus: 2-s2.0-85115628413
OpenAlex: W3204193042
Citing: Пока нет цитирований
Altmetrics: