Sciact
  • EN
  • RU

On switching nonseparable graphs with switching separable subgraph Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2014, Volume: 11, Pages: 988-998 Pages count : 11
Tags n-ary quasigroup; Seidel switching; Switching of graph; Switching separability; Two-graph
Authors Bespalov E.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
2 Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia

Abstract: A graph of order n≥4 is called switching separable if its modulo-2 sum with some complete bipartite graph on the same set of vertices is divided into two mutually independent subgraphs, each having at least two vertices. We describe all switching nonseparable graphs of order n whose induced subgraphs of order (n−1) are all switching separable. In particular, such graphs exist only if n is odd. This leads to the following essential refinement of the known test on switching separability, in terms of subgraphs: if all order-(n−1) subgraphs of a graph of order n are separable, then either the graph itself is separable, or n is odd and the graph belongs to the two described switching classes.
Cite: Bespalov E.A.
On switching nonseparable graphs with switching separable subgraph
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2014. V.11. P.988-998. Scopus
Dates:
Submitted: Oct 31, 2014
Published print: Dec 25, 2014
Identifiers:
Scopus: 2-s2.0-85007500986
Citing:
DB Citing
Scopus 1