Sciact
  • EN
  • RU

On the number of resolvable Steiner triple systems of small 3-rank Full article

Journal Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Output data Year: 2020, Volume: 88, Number: 6, Pages: 1037-1046 Pages count : 10 DOI: 10.1007/s10623-020-00725-y
Tags Steiner triple systems, Resolvable systems, 3-rank
Authors Shi M. 1 , Xu L. 1 , Krotov D.S. 2
Affiliations
1 School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
2 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk, Russia 630090

Abstract: In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order v, where v=3^k, and 3-rank v-k. We develop an approach to generalize this bound and estimate the number of isomorphism classes of resolvable STS(v) of 3-rank v-k-1 for an arbitrary v of form 3^kT, where T is congruent to 1 or 3 modulo 6.
Cite: Shi M. , Xu L. , Krotov D.S.
On the number of resolvable Steiner triple systems of small 3-rank
Designs, Codes and Cryptography. 2020. V.88. N6. P.1037-1046. DOI: 10.1007/s10623-020-00725-y WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jul 2, 2019
Accepted: Jan 21, 2020
Published online: Feb 4, 2020
Identifiers:
Web of science: WOS:000511045300002
Scopus: 2-s2.0-85079458655
Elibrary: 43243369
OpenAlex: W3100245375
Citing:
DB Citing
Web of science 1
Scopus 1
OpenAlex 1
Altmetrics: