Sciact
  • EN
  • RU

On WL-rank and WL-dimension of some deza dihedrants Full article

Journal Записки научных семинаров ПОМИ
ISSN: 0373-2703
Output data Year: 2022, Volume: 518, Pages: 152-172 Pages count : 21
Tags WL-rank, WL-dimension, Deza graphs, Cayley graphs, dihedral group.
Authors Ryabov G. 1 , Shalaginov L. 2
Affiliations
1 Sobolev Institute of Mathematics
2 Chelyabinsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0002

Abstract: The WL-rank of a graph Г is defined to be the rank of the coherent configuration of Г. The WL-dimension of Г is defined to be the smallest positive integer m for which Г is identified by the m-dimensional Weisfeiler-Leman algorithm. We present some families of strictly Deza dihedrants of WL-rank 4 or 5 and WL-dimension 2. Computer calculations show that every strictly Deza dihedrant with at most 59 vertices is circulant or belongs to one of the above families. We also construct a new infinite family of strictly Deza dihedrants whose WL-rank is a linear function of the number of vertices.
Cite: Ryabov G. , Shalaginov L.
On WL-rank and WL-dimension of some deza dihedrants
Записки научных семинаров ПОМИ. 2022. V.518. P.152-172. РИНЦ
Dates:
Submitted: Sep 26, 2022
Published print: Dec 12, 2022
Identifiers:
Elibrary: 50203090
Citing: Пока нет цитирований