On WL-rank and WL-dimension of some deza dihedrants Full article
Journal |
Записки научных семинаров ПОМИ
ISSN: 0373-2703 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 518, Pages: 152-172 Pages count : 21 | ||||
Tags | WL-rank, WL-dimension, Deza graphs, Cayley graphs, dihedral group. | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0002 |
Abstract:
The WL-rank of a graph Г is defined to be the rank of the coherent configuration of Г. The WL-dimension of Г is defined to be the smallest positive integer m for which Г is identified by the m-dimensional Weisfeiler-Leman algorithm. We present some families of strictly Deza dihedrants of WL-rank 4 or 5 and WL-dimension 2. Computer calculations show that every strictly Deza dihedrant with at most 59 vertices is circulant or belongs to one of the above families. We also construct a new infinite family of strictly Deza dihedrants whose WL-rank is a linear function of the number of vertices.
Cite:
Ryabov G.
, Shalaginov L.
On WL-rank and WL-dimension of some deza dihedrants
Записки научных семинаров ПОМИ. 2022. V.518. P.152-172. РИНЦ
On WL-rank and WL-dimension of some deza dihedrants
Записки научных семинаров ПОМИ. 2022. V.518. P.152-172. РИНЦ
Dates:
Submitted: | Sep 26, 2022 |
Published print: | Dec 12, 2022 |
Identifiers:
Elibrary: | 50203090 |
Citing:
Пока нет цитирований