Sciact
  • EN
  • RU

CHARACTERIZATION OF GROUPS E6(3) AND 2E6(3) BY GRUENBERG KEGEL GRAPH Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2021, Volume: 18, Number: 2, Pages: 1651-1656 Pages count : 6 DOI: 10.33048/semi.2021.18.124
Tags Exceptional group of lie type e6; Finite group; Simple group; The gruenbergkegel graph
Authors Khramova A.P. 1 , Maslova N.V. 2,4,5 , Panshin V.V. 1,3 , Staroletov A.M. 1,3
Affiliations
1 Sobolev Institute of Mathematics, 4 Acad Koptyug ave, Novosibirsk, 630090, Russian Federation
2 Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaja str, Yekaterinburg, 620108, Russian Federation
3 Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
4 Ural Federal University, 19, Mira str., Yekaterinburg, 620002, Russian Federation
5 Ural Mathematical Center, 19, Mira str., Yekaterinburg, 620002, Russian Federation

Funding (1)

1 Mathematical Center in Akademgorodok 075-15-2019-1675

Abstract: The Gruenberg Kegel graph (or the prime graph) Γ(G) of a nite group G is de ned as follows. The vertex set of Γ(G) is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in Γ(G) if and only if there exists an element of order rs in G. Suppose that L =≅ E6(3) or L ≅= 2E6(3). We prove that if G is a nite group such that Γ(G) = Γ(L), then G ≅= L. © 2021 Khramova A.P., Maslova N.V., Panshin V.V., Staroletov A.M. The work is supported by the Mathematical Center in Akademgorodok under the agreement 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation
Cite: Khramova A.P. , Maslova N.V. , Panshin V.V. , Staroletov A.M.
CHARACTERIZATION OF GROUPS E6(3) AND 2E6(3) BY GRUENBERG KEGEL GRAPH
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2021. V.18. N2. P.1651-1656. DOI: 10.33048/semi.2021.18.124 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000734395000042
Scopus: 2-s2.0-85123794632
OpenAlex: W4225965616
Citing:
DB Citing
Scopus 2
OpenAlex 1
Web of science 1
Altmetrics: