Inverse problems of finding the lowest coefficient in the elliptic equation Full article
Journal |
Журнал Сибирского федерального университета. Серия: Математика и физика (Journal of Siberian Federal University - Mathematics and Physics)
ISSN: 1997-1397 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2021, Volume: 14, Number: 4, Pages: 528-542 Pages count : 15 DOI: 10.17516/1997-1397-2021-14-4-528-542 | ||||||
Tags | Boundary integral condition; Elliptic equation; Existence; Spatial integral condition; Uniqueness; Unknown coefficient | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Russian Foundation for Basic Research | 18-01-00620 |
Abstract:
The article is devoted to the study of problems of finding the non-negative coefficient q(t) in the elliptic equation utt + a2∆u − q(t)u = f(x, t) (x = (x1, …, xn) ∈ Ω ⊂ ℝn, t ∈ (0, T ), 0 < T < +∞, ∆ — operator Laplace on x1, …, xn). These problems contain the usual boundary conditions and additional condition ( spatial integral overdetermination condition or boundary integral overdetermination condition). The theorems of existence and uniqueness are proved. © Siberian Federal University. All rights reserved.
Cite:
Kozhanov A.I.
, Shipina T.N.
Inverse problems of finding the lowest coefficient in the elliptic equation
Журнал Сибирского федерального университета. Серия: Математика и физика (Journal of Siberian Federal University - Mathematics and Physics). 2021. V.14. N4. P.528-542. DOI: 10.17516/1997-1397-2021-14-4-528-542 WOS Scopus OpenAlex
Inverse problems of finding the lowest coefficient in the elliptic equation
Журнал Сибирского федерального университета. Серия: Математика и физика (Journal of Siberian Federal University - Mathematics and Physics). 2021. V.14. N4. P.528-542. DOI: 10.17516/1997-1397-2021-14-4-528-542 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000684603900014 |
Scopus: | 2-s2.0-85115147762 |
OpenAlex: | W3210429240 |