Sciact
  • EN
  • RU

Additive perfect codes in Doob graphs Full article

Journal Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Output data Year: 2019, Volume: 87, Number: 8, Pages: 1857-1869 Pages count : 13 DOI: 10.1007/s10623-018-0586-y
Tags distance regular graphs, additive perfect codes, Doob graphs, quasi-cyclic codes, tight 2-designs
Authors Shi M. 1 , Huang D. 1 , Krotov D.S. 2
Affiliations
1 School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
2 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk, Russia 630090

Abstract: The Doob graph $D(m,n)$ is the Cartesian product of $m>0$ copies of the Shrikhande graph and $n$ copies of the complete graph of order $4$. Naturally, $D(m,n)$ can be represented as a Cayley graph on the additive group $(Z_4^2)^m \times (Z_2^2)^{n'} \times Z_4^{n''}$, where $n'+n''=n$. A set of vertices of $D(m,n)$ is called an additive code if it forms a subgroup of this group. We construct a $3$-parameter class of additive perfect codes in Doob graphs and show that the known necessary conditions of the existence of additive $1$-perfect codes in $D(m,n'+n'')$ are sufficient. Additionally, two quasi-cyclic additive $1$-perfect codes are constructed in $D(155,0+31)$ and $D(2667,0+127)$.
Cite: Shi M. , Huang D. , Krotov D.S.
Additive perfect codes in Doob graphs
Designs, Codes and Cryptography. 2019. V.87. N8. P.1857-1869. DOI: 10.1007/s10623-018-0586-y WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jun 7, 2018
Accepted: Nov 12, 2018
Published online: Nov 29, 2018
Identifiers:
Web of science: WOS:000472907800010
Scopus: 2-s2.0-85057841416
Elibrary: 41791226
OpenAlex: W3099948922
Citing:
DB Citing
Web of science 12
Scopus 13
Elibrary 12
OpenAlex 14
Altmetrics: