Sciact
  • EN
  • RU

Дополнение к теореме Блока и к теореме Попова о дифференциально простых алгебрах Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2019, Volume: 16, Pages: 1375-1384 Pages count : 10 DOI: 10.33048/semi.2019.16.095
Tags differentially simple algebra, projective module, associative algebra, alternative algebra, Jordan algebra, Lie algebra, Malcev algebra algebra of polynomials.
Authors Желябин В.Н. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: The paper gives examples of differentially simple algebras over the field of complex numbers, which are not represented in the form specified in Block's theorem. More precisely, examples of these algebras are finitely generated projective, but non-free, modules over their centroids. Recall, Popov's theorem states, that a differentially simple alternative non-associative algebra over a field of characteristic zero is a finitely generated projective module over the center.
Cite: Желябин В.Н.
Дополнение к теореме Блока и к теореме Попова о дифференциально простых алгебрах
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. Т.16. С.1375-1384. DOI: 10.33048/semi.2019.16.095 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Apr 1, 2019
Published print: Oct 7, 2019
Identifiers:
Web of science: WOS:000489035400001
Scopus: 2-s2.0-85083274120
Elibrary: 42735138
OpenAlex: W3016173440
Citing:
DB Citing
Elibrary 1
Scopus 1
Web of science 1
OpenAlex 1
Altmetrics: