Sciact
  • EN
  • RU

MDS codes in Doob graphs Full article

Journal Problems of Information Transmission
ISSN: 0032-9460 , E-ISSN: 1608-3253
Output data Year: 2017, Volume: 53, Number: 2, Pages: 136-154 Pages count : 19 DOI: 10.1134/s003294601702003x
Tags Singleton bound, MDS code, Doob graph
Authors Bespalov E.A. 1 , Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: The Doob graph D(m,n), where m>0, is a Cartesian product of m copies of the Shrikhande graph and n copies of the complete graph K4 on four vertices. The Doob graph D(m,n) is a distance-regular graph with the same parameters as the Hamming graph H(2m+n,4). We give a characterization of MDS codes in Doob graphs D(m, n) with code distance at least 3. Up to equivalence, there are m^3/36+7m^2/24+11m/12+1−(m mod 2)/8−(m mod 3)/9 MDS codes with code distance 2m+n in D(m,n), two codes with distance 3 in each of D(2,0) and D(2,1) and with distance 4 in D(2,1), and one code with distance 3 in each of D(1,2) and D(1,3) and with distance 4 in each of D(1,3) and D(2,2).
Cite: Bespalov E.A. , Krotov D.S.
MDS codes in Doob graphs
Problems of Information Transmission. 2017. V.53. N2. P.136-154. DOI: 10.1134/s003294601702003x WOS Scopus РИНЦ OpenAlex
Original: Беспалов Е.А. , Кротов Д.С.
МДР-коды в графах Дуба
Проблемы передачи информации. 2017. Т.53. №2. С.40-59. РИНЦ
Dates:
Published online: Jul 13, 2017
Identifiers:
Web of science: WOS:000405581700003
Scopus: 2-s2.0-85023769057
Elibrary: 41775246
OpenAlex: W2191679225
Citing:
DB Citing
Web of science 3
Scopus 4
Elibrary 3
OpenAlex 2
Altmetrics: