The extended 1-perfect trades in small hypercubes Full article
| Journal |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||
|---|---|---|---|
| Output data | Year: 2017, Volume: 340, Number: 10, Pages: 2559-2572 Pages count : 14 DOI: 10.1016/j.disc.2017.06.016 | ||
| Tags | trades, bitrades, 1-perfect code, Steiner trades, small Witt design | ||
| Authors |
|
||
| Affiliations |
|
Abstract:
An extended 1-perfect trade is a pair (T0,T1) of two disjoint binary distance-4 even-weight codes such that the set of words at distance 1 from T0 coincides with the set of words at distance 1 from T1. Such trade is called primary if any pair of proper subsets of T0 and T1 is not a trade. Using a computer-aided approach, we classify nonequivalent primary extended 1-perfect trades of length 10, constant-weight extended 1-perfect trades of length 12, and Steiner trades derived from them. In particular, all Steiner trades with parameters (5,6,12) are classified.
Cite:
Krotov D.S.
The extended 1-perfect trades in small hypercubes
Discrete Mathematics. 2017. V.340. N10. P.2559-2572. DOI: 10.1016/j.disc.2017.06.016 WOS Scopus РИНЦ OpenAlex
The extended 1-perfect trades in small hypercubes
Discrete Mathematics. 2017. V.340. N10. P.2559-2572. DOI: 10.1016/j.disc.2017.06.016 WOS Scopus РИНЦ OpenAlex
Dates:
| Submitted: | Apr 19, 2016 |
| Accepted: | Jun 15, 2017 |
| Published online: | Jul 8, 2017 |
Identifiers:
| Web of science: | WOS:000407182200028 |
| Scopus: | 2-s2.0-85021903136 |
| Elibrary: | 31049800 |
| OpenAlex: | W2193463959 |