Sciact
  • EN
  • RU

The extended 1-perfect trades in small hypercubes Full article

Journal Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Output data Year: 2017, Volume: 340, Number: 10, Pages: 2559-2572 Pages count : 14 DOI: 10.1016/j.disc.2017.06.016
Tags trades, bitrades, 1-perfect code, Steiner trades, small Witt design
Authors Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk, Russia

Abstract: An extended 1-perfect trade is a pair (T0,T1) of two disjoint binary distance-4 even-weight codes such that the set of words at distance 1 from T0 coincides with the set of words at distance 1 from T1. Such trade is called primary if any pair of proper subsets of T0 and T1 is not a trade. Using a computer-aided approach, we classify nonequivalent primary extended 1-perfect trades of length 10, constant-weight extended 1-perfect trades of length 12, and Steiner trades derived from them. In particular, all Steiner trades with parameters (5,6,12) are classified.
Cite: Krotov D.S.
The extended 1-perfect trades in small hypercubes
Discrete Mathematics. 2017. V.340. N10. P.2559-2572. DOI: 10.1016/j.disc.2017.06.016 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Apr 19, 2016
Accepted: Jun 15, 2017
Published online: Jul 8, 2017
Identifiers:
Web of science: WOS:000407182200028
Scopus: 2-s2.0-85021903136
Elibrary: 31049800
OpenAlex: W2193463959
Citing:
DB Citing
Web of science 7
Scopus 8
Elibrary 8
OpenAlex 15
Altmetrics: