Sciact
  • EN
  • RU

The minimum volume of subspace trades Full article

Journal Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Output data Year: 2017, Volume: 340, Number: 12, Pages: 2723-2731 Pages count : 9 DOI: 10.1016/j.disc.2017.08.012
Tags Bitrades, Trades, Subspace designs
Authors Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk 680090, Russia

Abstract: A subspace bitrade of type Tq(t,k,v) is a pair (T0,T1) of two disjoint nonempty collections of k-dimensional subspaces of a v-dimensional space V over the finite field of order q such that every t-dimensional subspace of V is covered by the same number of subspaces from T0 and T1. In a previous paper, the minimum cardinality of a subspace Tq(t,t+1,v) bitrade was established. We generalize that result by showing that for admissible v, t, and k, the minimum cardinality of a subspace Tq(t,k,v) bitrade does not depend on k. An example of a minimum bitrade is represented using generator matrices in the reduced echelon form. For t=1, the uniqueness of a minimum bitrade is proved.
Cite: Krotov D.S.
The minimum volume of subspace trades
Discrete Mathematics. 2017. V.340. N12. P.2723-2731. DOI: 10.1016/j.disc.2017.08.012 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jun 28, 2016
Accepted: Aug 8, 2017
Published online: Sep 5, 2017
Identifiers:
Web of science: WOS:000412621100001
Scopus: 2-s2.0-85028750380
Elibrary: 31064594
OpenAlex: W2270759269
Citing:
DB Citing
Web of science 4
Scopus 4
Elibrary 5
OpenAlex 10
Altmetrics: