Sciact
  • EN
  • RU

On the number of maximum independent sets in Doob graphs Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2015, Volume: 12, Pages: 508-512 Pages count : 5 DOI: 10.17377/semi.2015.12.043
Tags Doob graph, independent set, MDS code, latin hypercube
Authors Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Akademika Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: The Doob graph D(m,n) is a distance-regular graph with the same parameters as the Hamming graph H(2m+n,4). The maximum independent sets in the Doob graphs are analogs of the distance-2 MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in D(m,n) grows as 2^{2m+n-1}(1+o(1)). The main tool for the upper estimation is constructing an injective map from the class of maximum independent sets in D(m,n) to the class of distance-2 MDS codes in H(2m+n,4).
Cite: Krotov D.S.
On the number of maximum independent sets in Doob graphs
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2015. V.12. P.508-512. DOI: 10.17377/semi.2015.12.043 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Aug 4, 2015
Published online: Sep 11, 2015
Identifiers:
Web of science: WOS:000440432400077
Scopus: 2-s2.0-85003467528
Elibrary: 25409131
OpenAlex: W2558556197
Citing:
DB Citing
Scopus 4
Elibrary 4
Web of science 3
OpenAlex 3
Altmetrics: