Sciact
  • EN
  • RU

On $Z_{2^k}$-Dual Binary Codes Full article

Journal IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654
Output data Year: 2007, Volume: 53, Number: 4, Pages: 1532-1537 Pages count : 6 DOI: 10.1109/tit.2007.892787
Tags Gray map, Hadamard codes, MacWilliams identity, perfect codes, $Z_{2^k}$-linearity
Authors Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia

Abstract: A new generalization of the Gray map is introduced. The new generalization $\Phi: Z_{2^k}^n \to Z_{2}^{2^{k-1}n}$ is connected with the known generalized Gray map $\varphi$ in the following way: if we take two dual linear $Z_{2^k}$-codes and construct binary codes from them using the generalizations $\varphi$ and $\Phi$ of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity. The classes of $Z_{2^k}$-linear Hadamard codes and co-$Z_{2^k}$-linear extended 1-perfect codes are described, where co-$Z_{2^k}$-linearity means that the code can be obtained from a linear $Z_{2^k}$-code with the help of the new generalized Gray map.
Cite: Krotov D.S.
On $Z_{2^k}$-Dual Binary Codes
IEEE Transactions on Information Theory. 2007. V.53. N4. P.1532-1537. DOI: 10.1109/tit.2007.892787 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jul 2, 2006
Published online: Mar 26, 2007
Identifiers:
Web of science: WOS:000245306000020
Scopus: 2-s2.0-34147161642
Elibrary: 13544944
OpenAlex: W1987121126
Citing:
DB Citing
Web of science 35
Scopus 39
Elibrary 23
OpenAlex 36
Altmetrics: