ON NILPOTENT SCHUR GROUPS Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 19, Number: 2, Pages: 1077-1087 Pages count : 11 DOI: 10.33048/semi.2022.19.086 | ||||
Tags | Schur rings, Schur groups, nilpotent groups | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 22-71-00021 |
Abstract:
A finite group G is called a Schur group if every S-ring
over G is schurian, i.e. associated in a natural way with a subgroup
of Sym(G) that contains all right translations. We prove that every
nonabelian nilpotent Schur group belongs to one of a few explicitly given
families of groups.
Cite:
Ryabov G.K.
ON NILPOTENT SCHUR GROUPS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.1077-1087. DOI: 10.33048/semi.2022.19.086 WOS Scopus РИНЦ
ON NILPOTENT SCHUR GROUPS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.1077-1087. DOI: 10.33048/semi.2022.19.086 WOS Scopus РИНЦ
Dates:
Submitted: | Aug 30, 2022 |
Published online: | Dec 29, 2022 |
Identifiers:
Web of science: | WOS:000959099400012 |
Scopus: | 2-s2.0-85166966153 |
Elibrary: | 50336872 |