Sciact
  • EN
  • RU

ON NILPOTENT SCHUR GROUPS Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 2, Pages: 1077-1087 Pages count : 11 DOI: 10.33048/semi.2022.19.086
Tags Schur rings, Schur groups, nilpotent groups
Authors Ryabov G.K. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State Technical University

Funding (1)

1 Russian Science Foundation 22-71-00021

Abstract: A finite group G is called a Schur group if every S-ring over G is schurian, i.e. associated in a natural way with a subgroup of Sym(G) that contains all right translations. We prove that every nonabelian nilpotent Schur group belongs to one of a few explicitly given families of groups.
Cite: Ryabov G.K.
ON NILPOTENT SCHUR GROUPS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.1077-1087. DOI: 10.33048/semi.2022.19.086 WOS Scopus РИНЦ
Dates:
Submitted: Aug 30, 2022
Published online: Dec 29, 2022
Identifiers:
Web of science: WOS:000959099400012
Scopus: 2-s2.0-85166966153
Elibrary: 50336872
Citing:
DB Citing
Web of science 1
Scopus 1
Elibrary 1
Altmetrics: