Sciact
  • EN
  • RU

Conformal Yang-Baxter equation on Cur(sl2(C)) Full article

Journal Journal of Mathematical Physics
ISSN: 0022-2488 , E-ISSN: 1089-7658
Output data Year: 2023, Volume: 64, Number: 1, Article number : 011704, Pages count : 20 DOI: 10.1063/5.0127927
Tags conformal Lie algebra, conformal classical Yang—Baxter equation
Authors Gubarev Vsevolod 1,2 , Kozlov Roman 1,2
Affiliations
1 Sobolev Institute of Mathematics, Acad. Koptyug Ave. 4, 630090 Novosibirsk, Russia
2 Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia

Funding (1)

1 Президент РФ 075-15-2021-129, MK-1241.2021.1.1

Abstract: In 2008, Liberati [J. Algebra 319, 2295-2318 (2008)] defined what a conformal Lie bialgebra is and introduced the conformal classical Yang-Baxter equation (CCYBE). An L-invariant solution to the weak version of CCYBE provides a conformal Lie bialgebra structure. We describe all solutions to the CCYBE on the current Lie conformal algebra Cur(sl2(C)) and to the weak version of it.
Cite: Gubarev V. , Kozlov R.
Conformal Yang-Baxter equation on Cur(sl2(C))
Journal of Mathematical Physics. 2023. V.64. N1. 011704 :1-20. DOI: 10.1063/5.0127927 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Sep 25, 2022
Accepted: Jan 5, 2023
Published print: Jan 27, 2023
Published online: Jan 27, 2023
Identifiers:
Web of science: WOS:000923091400001
Scopus: 2-s2.0-85147179734
Elibrary: 60605096
OpenAlex: W4319999610
Citing: Пока нет цитирований
Altmetrics: