Sciact
  • EN
  • RU

Direct powers of algebraic structures and equations Full article

Journal Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika)
ISSN: 2071-0410 , E-ISSN: 2311-2263
Output data Year: 2022, Number: 58, Pages: 31-39 Pages count : 9 DOI: 10.17223/20710410/58/4
Tags graphs, matroids, finite algebraic structures, direct powers, equationally Noetherian algebraic structures.
Authors Shevlyakov A. 1,2
Affiliations
1 Sobolev Institute of Mathematics SB RAS, Omsk, Russia
2 Dostoevsky Omsk State University, Omsk, Russia

Funding (1)

1 Russian Science Foundation 22-21-00745

Abstract: We study systems of equations over graphs, posets and matroids. We give the criteria when a direct power of such algebraic structures is equationally Noetherian. Moreover, we prove that any direct power of any finite algebraic structure is weakly equationally Noetherian.
Cite: Shevlyakov A.
Direct powers of algebraic structures and equations
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2022. N58. P.31-39. DOI: 10.17223/20710410/58/4 WOS Scopus РИНЦ OpenAlex
Dates:
Published print: Jan 24, 2023
Published online: Jan 24, 2023
Identifiers:
Web of science: WOS:000935594100004
Scopus: 2-s2.0-85149673280
Elibrary: 50123074
OpenAlex: W4318825674
Citing:
DB Citing
Web of science 1
Scopus 1
Elibrary 3
Altmetrics: