Direct powers of algebraic structures and equations Full article
Journal |
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika)
ISSN: 2071-0410 , E-ISSN: 2311-2263 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Number: 58, Pages: 31-39 Pages count : 9 DOI: 10.17223/20710410/58/4 | ||||
Tags | graphs, matroids, finite algebraic structures, direct powers, equationally Noetherian algebraic structures. | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 22-21-00745 |
Abstract:
We study systems of equations over graphs, posets and matroids. We give the criteria when a direct power of such algebraic structures is equationally Noetherian. Moreover, we prove that any direct power of any finite algebraic structure is weakly equationally Noetherian.
Cite:
Shevlyakov A.
Direct powers of algebraic structures and equations
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2022. N58. P.31-39. DOI: 10.17223/20710410/58/4 WOS Scopus РИНЦ OpenAlex
Direct powers of algebraic structures and equations
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2022. N58. P.31-39. DOI: 10.17223/20710410/58/4 WOS Scopus РИНЦ OpenAlex
Dates:
Published print: | Jan 24, 2023 |
Published online: | Jan 24, 2023 |
Identifiers:
Web of science: | WOS:000935594100004 |
Scopus: | 2-s2.0-85149673280 |
Elibrary: | 50123074 |
OpenAlex: | W4318825674 |