Symmetric skew braces and brace systems Full article
Journal |
Forum Mathematicum
ISSN: 0933-7741 , E-ISSN: 1435-5337 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2023, Volume: 35, Number: 3, Pages: 713-738 Pages count : 26 DOI: 10.1515/forum-2022-0134 | ||||||||
Tags | Skew left brace; symmetric skew brace | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0009 |
2 | Министерство науки и высшего образования РФ | 075-02-2022-884 |
Abstract:
For a skew left brace (G, center dot, o), the map lambda : (G, o)-> Aut(G, center dot ), a (sic) lambda(a), where lambda(a)(b) = a(-1 )center dot (a o b) for all a, b E G, is a group homomorphism. Then lambda can also be viewed as a map from (G, center dot ) to Aut(G, center dot ), which, in general, may not be a homomorphism. A skew left brace will be called lambda-anti-homomorphic (lambda-homomorphic) if lambda : (G, center dot )->, Aut(G, center dot ) is an anti-homomorphism (a homomorphism). We mainly study such skew left braces. We device a method for constructing a class of binary operations on a given set so that the set with any two such operations constitutes a lambda-homomorphic symmetric skew brace. Most of the constructions of symmetric skew braces dealt with in the literature fall in the framework of our construction. We then carry out various such constructions on specific infinite groups.
Cite:
Bardakov V.G.
, Neshchadim M.V.
, Yadav M.K.
Symmetric skew braces and brace systems
Forum Mathematicum. 2023. V.35. N3. P.713-738. DOI: 10.1515/forum-2022-0134 WOS Scopus OpenAlex
Symmetric skew braces and brace systems
Forum Mathematicum. 2023. V.35. N3. P.713-738. DOI: 10.1515/forum-2022-0134 WOS Scopus OpenAlex
Dates:
Submitted: | Apr 26, 2022 |
Published online: | Feb 28, 2023 |
Published print: | May 1, 2023 |
Identifiers:
Web of science: | WOS:000940844800001 |
Scopus: | 2-s2.0-85149574303 |
OpenAlex: | W4322494284 |