On the modeling of stationary sequences using the inverse distribution function Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2022, Volume: 19, Number: 2, Pages: 502-516 Pages count : 15 DOI: 10.33048/semi.2022.19.042 | ||
Tags | modeling of stationary processes, long-range dependence, limit theorems, function words in fiction. | ||
Authors |
|
||
Affiliations |
|
Abstract:
We study a method for modeling stationary sequences, which is implemented generally speaking by a nonlinear transformation of Gaussian noise. The paper establishes limit theorems in the metric space D[0,1] for normalized processes of partial sums of sequences obtained as a result of the mentioned Gaussian noise transformation. Application of this method for simulating function words in fiction is investigated
Cite:
Arkashov N.S.
On the modeling of stationary sequences using the inverse distribution function
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.502-516. DOI: 10.33048/semi.2022.19.042 WOS Scopus РИНЦ
On the modeling of stationary sequences using the inverse distribution function
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.502-516. DOI: 10.33048/semi.2022.19.042 WOS Scopus РИНЦ
Dates:
Submitted: | Sep 20, 2021 |
Published online: | Aug 23, 2022 |
Published print: | Mar 7, 2023 |
Identifiers:
Web of science: | WOS:000886649600008 |
Scopus: | 2-s2.0-85136709944 |
Elibrary: | 50336828 |
Citing:
DB | Citing |
---|---|
Scopus | 1 |