Sciact
  • EN
  • RU

On the modeling of stationary sequences using the inverse distribution function Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 2, Pages: 502-516 Pages count : 15 DOI: 10.33048/semi.2022.19.042
Tags modeling of stationary processes, long-range dependence, limit theorems, function words in fiction.
Authors Arkashov N.S. 1
Affiliations
1 Novosibirsk State Technical, 630073, Russia

Abstract: We study a method for modeling stationary sequences, which is implemented generally speaking by a nonlinear transformation of Gaussian noise. The paper establishes limit theorems in the metric space D[0,1] for normalized processes of partial sums of sequences obtained as a result of the mentioned Gaussian noise transformation. Application of this method for simulating function words in fiction is investigated
Cite: Arkashov N.S.
On the modeling of stationary sequences using the inverse distribution function
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.502-516. DOI: 10.33048/semi.2022.19.042 WOS Scopus РИНЦ
Dates:
Submitted: Sep 20, 2021
Published online: Aug 23, 2022
Published print: Mar 7, 2023
Identifiers:
Web of science: WOS:000886649600008
Scopus: 2-s2.0-85136709944
Elibrary: 50336828
Citing:
DB Citing
Scopus 1
Altmetrics: