On the preservation of the Wiener index of cubic graphs upon vertex removal Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 20, Number: 1, Pages: 285-292 Pages count : 8 DOI: 10.33048/semi.2023.20.023 | ||
Tags | distance invariant, Wiener index, Soltes problem | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 23-21-00459 |
Abstract:
The Wiener index, W(G), is the sum of distances between all vertices of a connected graph G. In 2018, Majstorovic, Knor and Skrekovski posed the problem of nding r-regular graphs except cycle C11 having at least one vertex v with property W(G) = W(G v). An innite family of cubic graphs with four such vertices is constructed.
Cite:
Dobrynin A.A.
On the preservation of the Wiener index of cubic graphs upon vertex removal
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N1. P.285-292. DOI: 10.33048/semi.2023.20.023 WOS Scopus РИНЦ
On the preservation of the Wiener index of cubic graphs upon vertex removal
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N1. P.285-292. DOI: 10.33048/semi.2023.20.023 WOS Scopus РИНЦ
Dates:
Submitted: | Feb 3, 2023 |
Published print: | Mar 13, 2023 |
Published online: | Mar 13, 2023 |
Identifiers:
Web of science: | WOS:000959070400017 |
Scopus: | 2-s2.0-85150789667 |
Elibrary: | 54768295 |