Sciact
  • EN
  • RU

A Local Search Algorithm for the Resource-Constrained Project Scheduling Problem Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2022, Volume: 16, Number: 4, Pages: 672–683 Pages count : 12 DOI: 10.1134/S1990478922040081
Tags resource-constrained project scheduling problem, renewable resources, Tabu search, variable neighborhood search, PSPLIB
Authors Goncharov E.N. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0019

Abstract: We consider the resource-constrained project scheduling problem (RCPSP). The problem accounts for technological constraints of activities precedence together with resource constraints. All resources are renewable. Activities interruptions are not allowed. This problem is NP-hard in the strong sense. We present a new local search algorithm that uses a Tabu-list and two types of neighborhoods. The algorithm is evaluated using three data bases of instances of the problem: 480 instances of 60 activities, 480 of 90, and 600 of 120 activities, respectively, taken from the PSPLIB library available online. Numerical experiments demonstrate that the proposed algorithm produces better results than existing algorithms described in the literature for large-sized instances. For some instances from the dataset j120, the best known heuristic solutions were improved.
Cite: Goncharov E.N.
A Local Search Algorithm for the Resource-Constrained Project Scheduling Problem
Journal of Applied and Industrial Mathematics. 2022. V.16. N4. P.672–683. DOI: 10.1134/S1990478922040081 Scopus РИНЦ OpenAlex
Original: Гончаров Е.Н.
Алгоритм локального поиска для задачи календарного планирования с ограниченными ресурсами
Дискретный анализ и исследование операций. 2022. Т.29. №4. С.15-37. DOI: 10.33048/daio.2022.29.734 РИНЦ
Dates:
Submitted: Apr 21, 2022
Accepted: May 26, 2022
Published print: Mar 6, 2023
Published online: Mar 6, 2023
Identifiers:
Scopus: 2-s2.0-85149973586
Elibrary: 59198323
OpenAlex: W4323344556
Citing: Пока нет цитирований
Altmetrics: