Sciact
  • EN
  • RU

Complexity of the problem of being equivalent to Horn formulas. II Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2022, Volume: 61, Number: 4, Pages: 318-327 Pages count : 10 DOI: 10.1007/s10469-023-09700-7
Tags horn formula, m-reducibility, algebra, mathematical logic and foundations
Authors Kogabaev N.T. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0011
2 Russian Foundation for Basic Research 20-01-00300

Abstract: We look at the complexity of the existence problem for a Horn sentence equivalent to a given one. It is proved that for a signature consisting of one unary function symbol and any finite number of unary predicate symbols, the problem is computable. For a signature with at least two unary function symbols, it is stated that the problem mentioned is an m-complete ∑01set .
Cite: Kogabaev N.T.
Complexity of the problem of being equivalent to Horn formulas. II
Algebra and Logic. 2022. V.61. N4. P.318-327. DOI: 10.1007/s10469-023-09700-7 WOS Scopus РИНЦ OpenAlex
Original: Когабаев Н.Т.
О сложности проблемы эквивалентности хорновским формулам. II
Алгебра и логика. 2022. Т.61. №4. С.469-482. DOI: 10.33048/alglog.2022.61.406 РИНЦ
Dates:
Submitted: Feb 16, 2022
Published online: Sep 30, 2022
Accepted: Mar 29, 2023
Published print: Apr 28, 2023
Identifiers:
Web of science: WOS:000980226100001
Scopus: 2-s2.0-85153747027
Elibrary: 59285581
OpenAlex: W4367314728
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 1
Elibrary 1
Altmetrics: