Sciact
  • EN
  • RU

Исследование систем уравнений над различными классами конечных матроидов Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 2, Pages: 1094-1102 Pages count : 9 DOI: 10.33048/semi.2022.19.088
Tags graph, matroid, system of equations, computational complexity.
Authors Ильев А.В. 1
Affiliations
1 Институт математики им. С.Л. Соболева СО РАН, 630090, г. Новосибирск, пр-т акад. Коптюга, 4

Funding (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0003

Abstract: In the paper, it is proved that the problem of checking compatibility of a finite system of equations over a matroid of rank not exeeding k is NP-complete for k ⩾ 2. Moreover, it is proved that the problem of checking compatibility of a finite system of equations over a k-uniform matroid is also NP-complete for k ⩾ 2, and the problem of checking compatibility of a finite system of equations over a partition matroid of rank not exeeding k is polynomially solvable for k = 2 and NP-complete for k ⩾ 3.
Cite: Ильев А.В.
Исследование систем уравнений над различными классами конечных матроидов
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. Т.19. №2. С.1094-1102. DOI: 10.33048/semi.2022.19.088 WOS РИНЦ
Dates:
Submitted: Nov 5, 2022
Published online: Dec 29, 2022
Published print: Mar 7, 2023
Identifiers:
Web of science: WOS:000959099400014
Elibrary: 50336874
Citing:
DB Citing
Web of science 2
Elibrary 4
Altmetrics: