Sciact
  • EN
  • RU

Maximal Ideal Spaces of Invariant Function Algebras on Compact Groups Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2023, Volume: 33, Number: 2, Pages: 107–139 Pages count : 33 DOI: 10.1134/S1055134423020025
Tags invariant function algebra, maximal ideal space, complex Lie semigroup.
Authors Gichev V.M. 1
Affiliations
1 Sobolev Institute of Mathematics, Omsk Division, Omsk, 644099 Russia

Abstract: Let G be a compact group and A be a closed subalgebra of C(G) which is invariant under the left and right shifts in G. We consider maximal ideal spaces (spectra) MA of these algebras. They can be defined as closed sub-bialgebras of C(G). There is a natural semigroup structure in MA that admits an involutive anti-automorphism and a polar decomposition. If MA = G then MA has a nontrivial analytic structure. If G is a Lie group then every idempotent in MA is the identity element of a complex Lie semigroup embedded to MA. The semigroup MA admits an analogue of Cartan’s decomposition KAK, namely, MA = GTG , where T is an abelian semigroup that is a hull of the maximal torus T .
Cite: Gichev V.M.
Maximal Ideal Spaces of Invariant Function Algebras on Compact Groups
Siberian Advances in Mathematics. 2023. V.33. N2. P.107–139. DOI: 10.1134/S1055134423020025 Scopus РИНЦ OpenAlex
Original: Гичев В.М.
Пространства максимальных идеалов инвариантных алгебр функций на компактных группах
Математические труды. 2022. Т.25. №2. С.31-87. DOI: 10.33048/mattrudy.2022.25.202 РИНЦ
Dates:
Submitted: Oct 3, 2022
Accepted: Nov 2, 2022
Published print: May 25, 2023
Published online: May 25, 2023
Identifiers:
Scopus: 2-s2.0-85160272520
Elibrary: 61528013
OpenAlex: W1814987579
Citing:
DB Citing
OpenAlex 3
Altmetrics: