Rota-baxter operators on Cur(SL2(c)) Full article
| Journal |
International Electronic Journal of Algebra
, E-ISSN: 1306-6048 |
||||
|---|---|---|---|---|---|
| Output data | Year: 2023, Volume: 33, Number: 33, Pages: 247-269 Pages count : 23 DOI: 10.24330/ieja.1218727 | ||||
| Tags | Lie conformal algebra, RotaBaxter operator, conformal classical Yang-Baxter equation | ||||
| Authors |
|
||||
| Affiliations |
|
Funding (1)
| 1 | Президент РФ | 075-15-2021-129, MK-1241.2021.1.1 |
Abstract:
We classify all Rota-Baxter operators on the simple Lie confor-mal algebra Cur(sl2(C)) and clarify which of them arise from the solutions to the conformal classical Yang-Baxter equation due to the connection discov-ered by Y. Hong and C. Bai in 2020.
Cite:
Gubarev V.
, Kozlov R.
Rota-baxter operators on Cur(SL2(c))
International Electronic Journal of Algebra. 2023. V.33. N33. P.247-269. DOI: 10.24330/ieja.1218727 WOS Scopus РИНЦ OpenAlex
Rota-baxter operators on Cur(SL2(c))
International Electronic Journal of Algebra. 2023. V.33. N33. P.247-269. DOI: 10.24330/ieja.1218727 WOS Scopus РИНЦ OpenAlex
Dates:
| Submitted: | Sep 13, 2022 |
| Accepted: | Nov 8, 2022 |
| Published print: | Jan 9, 2023 |
| Published online: | Jan 9, 2023 |
Identifiers:
| Web of science: | WOS:000981502700016 |
| Scopus: | 2-s2.0-85148575861 |
| Elibrary: | 60281338 |
| OpenAlex: | W4311275147 |
Citing:
Пока нет цитирований