Sciact
  • EN
  • RU

Алгебры бинарных формул для композиций теорий Full article

Journal Алгебра и логика
ISSN: 0373-9252
Output data Year: 2020, Volume: 59, Number: 4, Pages: 432-457 Pages count : 26 DOI: 10.33048/alglog.2020.59.402
Tags algebra of binary formulas, composition of theories, e-definable composition, ℵ0- categorical theory, strongly minimal theory, stable theory, linear preorder, cyclic preorder
Authors Емельянов Д.Ю. 1 , Кулпешов Б.Ш. 2,3 , Sudoplatov Sergei Vladimirovich 1,4,5
Affiliations
1 Новосибирский государственный технический университет
2 Казахстанско-Британский технический университет
3 Международный университет информационных технологий
4 Институт математики им. С.Л. Соболева СО РАН
5 Новосибирский государственный университет

Abstract: We consider algebras of binary formulas for compositions of theories both in the general case and as applied to ℵ0-categorical, strongly minimal, and stable theories, linear preorders, cyclic preorders, and series of finite structures. It is shown that e-definable compositions preserve isomorphisms and elementary equivalence and have basicity formed by basic formulas of the initial theories. We find criteria for e-definable compositions to preserve ℵ0-categoricity, strong minimality, and stability. It is stated that e-definable compositions of theories specify compositions of algebras of binary formulas. A description of forms of these algebras is given relative to compositions with linear orders, cyclic orders, and series of finite structures.
Cite: Емельянов Д.Ю. , Кулпешов Б.Ш. , Судоплатов С.В.
Алгебры бинарных формул для композиций теорий
Алгебра и логика. 2020. Т.59. №4. С.432-457. DOI: 10.33048/alglog.2020.59.402 РИНЦ OpenAlex
Translated: Емельянов Д.Ю. , Кулпешов Б.Ш. , Sudoplatov S.V.
Algebras of binary formulas for compositions of theories
Algebra and Logic. 2020. V.59. N4. P.295-312. DOI: 10.1007/s10469-020-09602-y WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Apr 9, 2019
Accepted: Nov 24, 2020
Published print: Nov 29, 2020
Published online: Nov 29, 2020
Identifiers:
Elibrary: 44268550
OpenAlex: W4239231170
Citing:
DB Citing
Elibrary 3
OpenAlex 2
Altmetrics: