Sciact
  • EN
  • RU

Linear inverse problems for the heat equation and non-local boundary value problems with generalized Samarskii–Ionkin condition Full article

Journal Boletín de la Sociedad Matemática Mexicana
ISSN: 1405-213X
Output data Year: 2023, Volume: 29, Number: 3, Article number : 64, Pages count : 16 DOI: 10.1007/s40590-023-00529-9
Tags Heat equation · Linear inverse problems · Generalized Samarskii–Ionkin condition · Regular solutions · Existence and uniqueness
Authors Kozhanov A.I. 1 , Shipina T.N. 2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Siberian Federal University, Krasnoyarsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: The paper is devoted to the study of the solvability of linear inverse problems for a onedimensional heat equation with an unknown right-hand side. The aim of the work is to obtain theorems of the existence and uniqueness of regular solutions (i.e., solutions having all weak derivatives in the sense of Sobolev occurring in the equation) The proofs will essentially use new results on the solvability of nonlocal problems with a generalized Samarskii–Ionkin boundary condition.
Cite: Kozhanov A.I. , Shipina T.N.
Linear inverse problems for the heat equation and non-local boundary value problems with generalized Samarskii–Ionkin condition
Boletín de la Sociedad Matemática Mexicana. 2023. V.29. N3. 64 :1-16. DOI: 10.1007/s40590-023-00529-9 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jan 2, 2023
Accepted: Jun 20, 2023
Published print: Aug 24, 2023
Published online: Aug 24, 2023
Identifiers:
Web of science: WOS:001054519900001
Scopus: 2-s2.0-85168578327
Elibrary: 62834224
OpenAlex: W4386139083
Citing: Пока нет цитирований
Altmetrics: