Sciact
  • EN
  • RU

Приближенные алгоритмы для задач о двух коммивояжерах и о двух цикловых покрытиях на максимум с двумя весовыми функциями Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 923-941 Pages count : 19 DOI: 10.33048/semi.2023.20.056
Tags Traveling Salesman Problem, 2-Perpatetic Salesman Problem, Cycle Cover Problem, approximation algorithm, guaranteed approximation ratio, weight function
Authors Глебов А.Н. 1 , Лылова С.С. 2 , Токтохоева С.Г. 2
Affiliations
1 Институт математики им. С.Л. Соболева СО РАН
2 Новосибирский государственный университет

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: We present new polynomial approximation algorithms for the 2-Perpatetic Salesman Problem and the 2-Cycle Cover Problem. The m-Perpatetic Salesman Problem (m-PSP) is a generalization of the classical Traveling Salesman Problem. In the m-PSP, we need to nd m edge disjoint Hamiltonian cycles of the extremal total weight in a complete weighted graph G = (VE). In the m-Cycle Cover Problem (m-CC), we need to nd m edge disjoint cycle covers of the extremal weight in G. Many exact and approximation algorithms were proposed for the case of m-PSP where we are given only one weight function w : E R+andthe weight of m Hamiltonian cycles H1, H2 ... Hm is de ned as w(H1)+ +w(Hm). However, not so many results are known for the case when we are given m distinct weight functions w1w2 wm and the weight of H1H2 Hm is de ned as w1(H1) + w2(H2) + +wm(Hm) (the m-PSP-mW problem). Here we present a series of polynomial algorithms with approximation ratios 1 2 and higher for the 2-PSP-max-2W. As a supporting result, we produce a polynomial algorithm with the asymptotic ratio 2 3 for the 2-CC-max-2W problem.
Cite: Глебов А.Н. , Лылова С.С. , Токтохоева С.Г.
Приближенные алгоритмы для задач о двух коммивояжерах и о двух цикловых покрытиях на максимум с двумя весовыми функциями
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.923-941. DOI: 10.33048/semi.2023.20.056 Scopus РИНЦ
Dates:
Submitted: Dec 10, 2022
Accepted: Dec 12, 2023
Identifiers:
Scopus: 2-s2.0-85188437003
Elibrary: 82134643
Citing: Пока нет цитирований
Altmetrics: