Connected coalitions in graphs Full article
Journal |
Discussiones Mathematicae - Graph Theory
ISSN: 1234-3099 , E-ISSN: 2083-5892 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2024, Volume: 44, Number: 4, Pages: 1551-1566 Pages count : 16 DOI: 10.7151/dmgt.2509 | ||||||||
Tags | connected coalition partition; polynomial-time algorithm | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 23-21-00459 |
Abstract:
In this paper we give a thorough characterisation of graphs possessing a connected coalition partition. We also study the connected coalition number CC(G) in a graph G defined as the largest size of a connected coalition partition. It is shown that CC(G)<n for any simple graph G of order n with vertices of degree one but with no vertices of degree n-1, and CC(T)=2 for a tree T. Finally, polynomial-time algorithms for determining whether a given connected graph G of order n satisfies CC(G)=n or CC(G)=n-1 are presented.
Cite:
Alikhani S.
, Bakhshesh D.
, Golmohammadi H.
, Konstantinova E.V.
Connected coalitions in graphs
Discussiones Mathematicae - Graph Theory. 2024. V.44. N4. P.1551-1566. DOI: 10.7151/dmgt.2509 WOS Scopus РИНЦ OpenAlex
Connected coalitions in graphs
Discussiones Mathematicae - Graph Theory. 2024. V.44. N4. P.1551-1566. DOI: 10.7151/dmgt.2509 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Feb 26, 2023 |
Accepted: | Jul 9, 2023 |
Published online: | Jul 27, 2023 |
Published print: | Apr 2, 2024 |
Identifiers:
Web of science: | WOS:001146192500001 |
Scopus: | 2-s2.0-85202669259 |
Elibrary: | 62745556 |
OpenAlex: | W4386289568 |