Sciact
  • EN
  • RU

Edge 4-critical Koester graph of order 28. Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 847-853 Pages count : 7 DOI: 10.33048/semi.2023.20.051
Tags plane graph, 4-critical graph, Grotzsch-Sachs graph, Koester graph
Authors Dobrynin A.A. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: A Koester graph G is a simple 4-regular plane graph formed by the superposition of a set S of circles in the plane, no two of which are tangent and no three circles have a common point. Crossing points and arcs of S correspond to vertices and edges of G, respectively. A graph G is edge critical if the removal of any edge decreases its chromatic number. A 4-chromatic edge critical Koester graph of order 28 generated by intersection of six circles is presented. This improves an upper bound for the smallest order of such graphs. The previous upper bound was established by Gerhard Koester in 1984 by constructing a graph with 40 vertices.
Cite: Dobrynin A.A.
Edge 4-critical Koester graph of order 28.
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N2. P.847-853. DOI: 10.33048/semi.2023.20.051 WOS Scopus РИНЦ
Dates:
Submitted: Jun 3, 2023
Published print: Oct 26, 2023
Published online: Oct 26, 2023
Identifiers:
Web of science: WOS:001095866000002
Scopus: 2-s2.0-85176574384
Elibrary: 82134638
Citing:
DB Citing
Web of science 1
Altmetrics: